Contents

\mathbf{List}	of Figures	5	2	$\mathbf{x}\mathbf{v}$
Fore	word		XX	ciii
Pref	ace		XX	vii
Ackı	nowledgmen	ts	XX	cxi
Acro	onyms		XX	XV
1 I	ntroductio	on		1
1.1	Why we w	vrote this book and who it is for		2
1.2	Do you ne	eed deep learning?		4
1.3	Book stru	cture		8
1.4	Some rele	vant regulatory frameworks	•	10
	1.4.1	The European Union		11
	1.4.2	The United States	•	14
	1.4.3	The United Kingdom	•	16
	1.4.4	Canada	·	17
	1.4.5	Singapore	·	18
1.5	Technical	background		20
	1.5.1	Early days: the Perceptron		21
	1.5.2	The Multilayer Perceptron		25
	1.5.3	Training MLP: Backpropagation		29

	1.5.4	From Multilayer to Deep Learning	34
2 I	mage Prod	cessing and Convolutional Neural Networks	39
2.1	Image Dat	ta in Banking	41
2.2	Regulatory	y Constraints	43
2.3	Deep Lear	ning for Image Processing: Convolutional Neural Net-	
	works		44
	2.3.1	Introduction to CNNs	45
	2.3.2	Basic Structure	48
	2.3.3	Notable models	58
2.4	Training C	CNNs	64
	2.4.1	Transfer Learning of Image Models	66
2.5	CNN appl	ications in banking and finance	67
	2.5.1	Image Classification	67
	2.5.2	Content-Based Image Retrieval	69
	2.5.3	Object Localization and Detection	69
	2.5.4	Video Analysis	70
	2.5.5	Generative Convolutional Networks	72
2.6	Case Stud	y: LiDAR-Based Mortgage Default Rate Prediction .	74
	2.6.1	Data loaders and preprocessing	75
	2.6.2	A simple CNN	78
	2.6.3	Explaining the predictions: Grad-CAM	85
	2.6.4	Fine-tuning a ResNet-50 model	87

3 Т	Time series	and Recurrent Models	93
3.1	Time Serie	es and Panel Data in Banking	94
3.2	Regulatory	Aspects of Time-Series and Tabular Data	96
3.3	Deep Lear	ning Time-Series Models	100
	3.3.1	Recurrent Neural Networks	100
	3.3.2	Long Short-Term Memory	103
	3.3.3	Gated Recurrent Unit	108
	3.3.4	Echo State Networks	109
	3.3.5	Attention	110
	3.3.6	Temporal Convolutional Networks	112
3.4	Time serie	es applications in banking and finance	115
3.5	Case study	y: Behavioral Scoring Using Deep Learning	118
	3.5.1	Data processing	119
	3.5.2	Single channel models	123
	3.5.3	A first bimodal model	125
	3.5.4	Training and testing	126
4]	Text Data	and Transformers	135
4.1	Text Data	in Banking	136
4.2	Regulatory	and Ethical Concerns	138
4.3	Recurrenc	y and Attention for Text Analytics	142
4.4	Multi-head	d Attention	146
4.5	Transform	ers	148
16	Transform	or based architectures for toxt: from REPT and beyon	4 152

	4.6.1	BERT: Bidirectional Encoder Representation from	
		Transformers	154
	4.6.2	RoBERTa: a robustly optimized BERT	155
	4.6.3	ALBERT: a Lite BERT	156
	4.6.4	DistilBERT: a distilled BERT	158
	4.6.5	ModernBERT	159
4.7	Fine-tuning	g of pre-trained models	160
4.8	Training a	text model from scratch	162
4.9	Text-based	l applications in banking and finance	165
4.10	Case study	: Recession chances arising from Fed speeches using	
	BERT		168
	4.10.1	Data Loading and Preprocessing	169
	4.10.2	Model fine tuning	172
	4.10.3	Inference over new speeches	176
5 F	inancial C	ontagion and Network Models 1	79
5.1	Network d	ata in banking	182
	5.1.1	Network fundamentals	182
	5.1.2	Explicit Networks	188
	5.1.3	Implicit networks	189
5.2	Regulatory	concerns of using network data	196
5.3	Network fe	eatures: centrality and neighborhood	198
	5.3.1	Centrality measures	198
	5.3.2	Link-based measures	203

5.4	Graph Neu	ıral Networks	206
	5.4.1	Graph Neural Networks Origins	207
	5.4.2	GraphSAGE	211
	5.4.3	Graph Convolutional Networks	212
	5.4.4	Graph Attention Networks	213
	5.4.5	Graph Isomorphism Networks	215
	5.4.6	Transductive and inductive learning	216
	5.4.7	Temporal Graph Neural Networks	219
5.5	Network a	pplications in banking and finance	221
5.6	Case study	: Default correlation in mortgage lending	224
	5.6.1	Building the networks	225
	5.6.2	Defining GNN models	229
	5.6.3	Training and testing	233
	5.6.4	Model performance	235
6 G	Generative	AI and Large Language Models	241
6.1	Large Lang	guage Models in Banking	242
6.2	Regulatory	focus on Large Language Models	245
6.3	LLM Theo	ry	248
6.4	Alignment	and Reinforcement Learning from Human Feedback	
	(RLHF) .		252
6.5	LLMs as A	agents, Not Just Predictors	254
	6.5.1	Mixture of Experts (MoE)	255
	652	Patrioval Augmented Congration (PAC)	256

6.6	Agentic A	l	259
6.7	Licensing i	ssues and data use	263
6.8	LLM appli	cations in banking and finance	268
6.9	Case-study	: Comparison of prompt engineering and fine-tuning	
	for a credi	t scoring explainer	269
	6.9.1	Importing the models and calculating the scoring	
		system	271
	6.9.2	Zero-Shot Prompting and Prompt Engineering	273
	6.9.3	Fine-tuning and Quantizing an LLM	279
	6.9.4	Testing on new data	282
7 N	Multimodal	Data and Information Fusion	285
7.1	Al Multim	odal Models	287
	7.1.1	Data fusion: When to fuse the data	288
	7.1.2	Data fusion: How to combine multiple data sources	290
7.2	Creating a	Multimodal Model	294
	7.2.1	Training the Model	295
	7.2.2	Deploying Multimodal Models	296
7.3	Some Spe	cific Challenges in the Financial Sector	298
7.4	Operation	al Implications	300
7.5	Case study	x: A multimodal mortgage model	301
	7.5.1	Data preprocessing for multimodal deep learning	302
	7.5.2	Building the data loaders	305
	7.5.3	Defining and training the models	306

	7.5.4	Evaluation	310
8 F	airness, A	ccountability, Explainability and Causality	313
8.1	Fairness .		316
	8.1.1	The challenge of fairness	317
	8.1.2	The different approaches to fairness	319
	8.1.3	Mitigating unfairness	325
8.2	Accountab	pility	327
8.3	Explainabi	ility	332
	8.3.1	SHAP	334
	8.3.2	Explainable AI in Operational Research	339
8.4	Explainabi	ility vs Causality	341
8.5	Causal De	ep Learning	348
8.6	Case study	y: Fairness and Explainability	353
	8.6.1	Fairness	353
	8.6.2	Explainability	360
9 F	Perspective	es on the future of AI in banking	365
9.1	ROI analy	sis and project prioritization	366
9.2	Deploying	deep learning models	368
	9.2.1	Cloud or on-premise?	375
9.3	Future glo	bal perspectives	376
9.4	Closing W	/ords	378
Bibl	iography		381

List of Figures

1.1	Example of a tabular dataset for supervised learning inspired	
	by the credit scoring task	22
1.2	The architecture of the Perceptron model	23
1.3	Graphical representation of various activation functions	25
1.4	The architecture of the Multilayer Perceptron (MLP) model.	27
1.5	Illustration of different data representations: scalar (0D),	
	vector (1D), matrix (2D), and a three-dimensional tensor.	
	While tensors can have any number of dimensions, the 0D,	
	1D, and 2D cases are so commonly used that they are given	
	special names	34
2.1	Free LiDAR data coverage in the US. Map services and data	
	available from U.S. Geological Survey, National Geospatial	
	Program	43
2.2	Samples from the MNIST handwritten digits dataset	46
2.3	Example of a standard CNN	50
2.4	Functioning of the convolution and max-pooling layers	56
2.5	Example of a LiDAR image for MSA 1018. Source: USGS	
	data under open license	78
2.6	Loss plots for different learning rates	82

2.7	SmoothGrad-CAM++ for the simple CNN model	86
3.1	Representation of the RNN model (with backward connec-	
	tions and unrolled)	102
3.2	Temporal Convolutional Network (TCN). Each hidden layer	
	"dilates" the input point by \boldsymbol{d} steps, which can increase as	
	more layers are stacked. This is memory-efficient and easier	
	to parallelize over long sequences	114
3.3	Bimodal recurrent network with static features	125
3.4	ROC curves for all models.	132
4.1	RNN architecture adapted to NLP.	144
4.2	Overview of the Transformer architecture, structured around	
	an encoder-decoder framework. Key stages include input	
	embedding, encoding of the input sequence, decoding with	
	feedback from the partially generated output, and iterative	
	generation of the final output	150
4.3	Structure of a encoder block with multi-head self-attention	
	and feed-forward sublayers, repeated $N=6$ times	151
4.4	Structure of a decoder block with masked self-attention,	
	encoder-decoder attention, and feed-forward sublayers, re-	
	peated $N=6$ times	152
4.5	Transformer Architecture. Adapted from Vaswani et al. (2017)	. 153
4.6	ROC curve for the Fed speech economic forecasting model.	176
5.1	A simple network	183

5.2	Examples of networks that are either weighted or unweighted	
	and directed or undirected	185
5.3	Adjacency matrices of the networks in figure 5.2	186
5.4	An example of a bipartite network. It has two types of nodes,	
	dark and light, with no edges between dark nodes and no	
	edges between light nodes. The edges only connect a dark	
	node to a light node. The two adjacency matrices show	
	different ways to represent this network	187
5.5	Example of a spatial network. Node are connected based	
	on their physical or geographic distance with edge weight	
	indicating the distance.	190
5.6	A multilayer bipartite network	191
5.7	A multilayer unipartite network	192
5.8	A flattened –or edge colored– network	192
5.9	Graph showing the connections between the companies in	
	a return volatility series graph filtered by TMFG	195
5.10	A network of people. How does the position of the people	
	a_1 , a_2 , b_1 and b_2 differ in terms of having influence or spread-	
	ing risk?	199
5.11	An external event that propagates through a network from	
	a source node.	203
5.12	Example for computing link-based features	204
5.13	The inner workings of a GNN layer	209
5.14	Architecture for a temporal graph neural network	220

5.15	A subset of the network. Two nodes are connected if they	
	share an area or a provider. The nodes are colored by the	
	target variable, where light gray nodes a nodes are non-	
	delinquent (label 0) and dark gray nodes are delinquent (la-	
	bel 1).	228
5.16	Loss curves for all models	236
5.17	ROC curves for all models.	237
5.18	Confusion matrices for all models	238
6.1	Difference between Encoder-Only and Decoder-Only Trans-	
	former Architectures	249
6.2	Architecture of a Retrieval-Augmented Generation System .	258
6.3	SHAP values of a case. A detailed explanation of the method	
	can be found in Section 8.3.1	274
6.4	Weights & Biases Report	282
7.1	Different information fusion strategies. In this diagram, there	
	are three modalities (structured data, text and images) and	
	they are either processed by a function to be combined,	
	as in the early fusion example, or they are processed by a	
	model that outputs an embedding, a numerical representa-	
	tion of the data. A final AI model then transforms these	
	modalities into a desired final output, such as a prediction	
	or a regression value. Adapted from Tavakoli et al. (2025).	289
7.2	Cross attention vs Self-Attention. Adapted from Tavakoli	
	et al. (2025).	293

7.3	Concatenation Multimodal Model	307
7.4	Cross-Attention Multimodal Model	307
7.5	ROC curves for the two models	311
7.6	Confusion Matrices for the two models	311
8.1	A waterfall SHAP plot for a single observation	335
8.2	A summary SHAP plot for all variables	336
8.3	A beeswarm SHAP plot for all variables and observations	337
8.4	A dependence SHAP plot showing the interaction between	
	two variables.	338
8.5	A causal graph: Directed Acyclic Graph (DAG) with \boldsymbol{X} as a	
	confounder affecting both the bid \boldsymbol{B} and the target $\boldsymbol{Y}.$	342
8.6	Distribution of defaulters(1) and non-defaulters(0) among	
	the four groups of the sensitive attribute	354
8.7	Barplots showing (from left to right, top to bottom) the	
	count, accuracy, selection rate, precision, true positive rate,	
	true negative rate, false positive rate and false negative rate	
	of the credit scoring model for the four groups	357
8.8	ROC curves per group and the feasible area	359
8.9	SHAP text explanations	364
8 1N	SHAP har explanations	364

9.1	A simple project prioritization matrix. Quick wins are models	
	that should take priority. Opportunities are difficult models	
	that can create "moats". Back burners are projects that can	
	be developed if there is spare capacity. No-Go are projects	
	with low ROI that are also very risky to develop	367
9.2	Some ROI factors. Be mindful of identifying quantitative	
	and qualitative ones!	369
93	General inference server architecture	371

List of Algorithms

2.1	Image Data: Data loading and preprocessing	76
2.2	Image Data: Create data loaders.	79
2.3	Image Data: Define simple CNN regressor	80
2.4	Image Data: Train simple model	83
2.5	Image Data: Evaluate simple model	84
2.6	Image Data: Grad-CAM for model explainability	85
2.7	Image Data: ResNet-50 model	89
2.8	Image Data: Train ResNet-50.	90
2.9	Image Data: Evaluate ResNet-50	91
3.1	Time-Series: Data Loading	120
3.2	Time-Series: Data preprocessing	122
3.3	Time-Series: Create data loaders.	123
3.4	Time-Series: Create Recurrent Model	124
3.5	Time-Series: Load static data	126
3.6	Time-Series: Define hybrid model	127
3.7	Time-Series: Training loop.	129
3.8	Time-Series: Validation loop	130
3.9	Time-Series: Running the models - Hybrid GRU model	131
4.1	Text data: Data loading	170

4.2	Text data: Preprocessing	.71
4.3	Text data: Fine tuning a BERT model	74
4.4	Text data: Inference on new data	77
5.1	Network data: Data loading and network creation 2	226
5.2	Network data: Define GNN models	230
5.3	Network data: Training and validation loop	234
5.4	Network data: Model Evaluation	235
6.1	LLM: Initial Setup	272
6.2	LLM: Zero-shot prompting	276
6.3	Detailed LLM Prompt Engineering and Fine-Tuning for Credit	
	Score Explainability	278
6.4	LLM Fine-tuning	281
6.5	Testing on new cases	282
7.1	Multimodal Learning: Load and process the data sources 3	303
7.2	Multimodal Learning: Preprocess all different channels 3	804
7.3	Multimodal Learning: Integrate Features and Create Datasets 3	306
7.4	Multimodal Learning: Define the models	808
7.5	Multimodal Learning: Model training loop	809
7.6	Multimodal Learning: Model evaluation	310
8.1	Model Explainability: Pre-processing, SHAP value calcula-	
	tion and visualization	362